Recent Monte Carlo Results for Cold Atoms

Introduction

Equal Mass at Unitarity

Improved DMC results

Initial lattice results

Unequal Masses
 Superfluid state
 Normal (Polarized) state
 Few-Particle states
 Future possibilities

Stefano Gandolfi (LANL), Alex Gezerlis (LANL/UW), Michael Forbes (UW)

Shiwei Zhang (W&M), Kevin Schmidt (ASU)

Joaquin Drut (LANL)

Cold Atoms near Unitarity

Continuum

$$H = \sum_{i=1,n_{l}} \frac{-\hbar^{2}}{2m_{l}} \nabla_{i}^{2} + \sum_{j=1,n_{h}} \frac{-\hbar^{2}}{2m_{h}} \nabla_{j}^{2} + \sum_{i,j} V(r_{ij})$$

$$v(r) = -\frac{2}{m} \frac{\mu^{2}}{\cosh^{2}(\mu r)}$$
Take the limit $\mu \rightarrow 0$
Single scale in the problem: $k_{F} = (3 \pi^{2} \rho)^{1/3}$
 $E = \xi E_{FG} = \xi (3/5) k_{F}^{2/} (2m)$
 $\Delta = \delta E_{F} = \delta k_{F}^{2/} (2m)$
 $C = 8 \pi^{2} \rho^{2} A^{2} = \zeta (2 k_{F}^{4} / (5 \pi))$
 $g(r) \rightarrow A^{2/} r^{2}$
Rich Experimental Control and Probes:
phase diagram, `exotic' superfluids, RF response,...

Equal Masses: Improved DMC calculations

Upper Bound to the Energy Applicable to polarized, unequal mass,...

> $\Psi_T = \prod_{ij} f_{ij'} \Phi_{\text{BCS}}$ $\Phi_{\text{BCS}} = \mathcal{A}[\phi(r_{11'})\phi(r_{22'})...\phi(r_{nn'})]$

Canonical Ensemble Dilute Periodic Boundary Conditions

$$\begin{split} \phi(\mathbf{r}) &= \tilde{\beta}(r) + \sum_{n} a(k_n^2) \exp[i\vec{k}_n \cdot \vec{r}] ,\\ \tilde{\beta}(r) &= \beta(r) + \beta(L-r) - 2\beta(L/2) ,\\ \beta(r) &= [1+cbr] \left[1 - \exp[-10br]\right] \frac{\exp[-br]}{br} \end{split}$$

Forbes, Gezerlis, Gandolfi (2010)

Gandolfi, Schmidt, Carlson (2010)

Pair function d variationally

$\frac{L^2}{4\pi^2}k^2$	$a(k^2)$	$\frac{L^2}{4\pi^2}k^2$	$a(k^2)$
0	0.00198	5	0.000190
1	0.00250	6	0.000200
2	0.00194	8	0.000167
3	0.00081	9	0.000163
4	0.00033	10	0.000120

Lattice Approaches (in progress)

Equivalent to attractive Hubbard model in dilute limit No sign problem, but dilute limit non-trivial Canonical approach (more efficient for T=0)

Evolve N single-particle wave functions w/ exp [- Η τ]
Kinetic Energy diagonal in momentum space
Interaction set in auxiliary fields, tuned to give
zero-energy bound state on infinite lattice
Auxiliary fields for interaction sampled by MC

Different operators lead to same continuum result Simplest Interaction is the Hubbard Model: On-site repulsion Nearest-neighbor hopping

Example: Kinetic Energy

Hubbard model (nearest neighbor hopping) k^2 / (2m)(easily evaluated via FFT)+ O(k⁴)match 2-body spectra (effective range)

Contact (Shina Tan)

Controls short-distance (high-momentum) dynamics

 $\psi \rightarrow \alpha/r$ n(k) $\rightarrow 1/k^4$

Since interaction is zero-ranged, can be measured in EOS Also controls high-energy part of RF response

Contact and the Pair Distribution Function

0.

Contact at Finite Temperature

Drut, Lahde, and Ten (2010)

Unequal Masses

Additional parameter to probe for new physics

BCS solution unchanged for different reduced mass Equal mass solution good starting point

 ξ (M/m = 6.5) - ξ (M/m = 1) = -0.02

Binding of One Heavy or One Light

 $B(H) = 0.36 E_F(L)$

effective mass ~1.0

 $B(L) = 2.3 E_F(H)$

effective mass ~ 1.3

Agreement w/ previous calculations

R. Combescot et al., Phys. Rev. Lett. 98, 180402 (2007)

Polarized Systems and Stable Phases

Local Density Approximation for Harmonic Trap

Polarization versus radius for different population imbalances

Future Possibilities

'Exotic' Superfluid States Mixed (or other) Dimensions Static Response & Finite Systems Dynamic (RF) Response Multiple Species

....