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Cold Atoms near Unitarity
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Heavy-Light Fermion Mixtures at Unitarity
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We investigate pairing between unequal-mass fermions in the unitary regime for a mass ratio
corresponding to a 6Li - 40K mixture. We show that the fully paired superfluid state is nearly
independent of the mass ratio; the ground-state energy and the average light and heavy particle
excitation spectrum change very little. However, in the majority light system, the polarized super-
fluid is close to stability compared to a phase separated state. For a majority of heavy particles, we
find an energy minimum for a normal state with a ratio of ∼ 3:1 heavy to light particles. A slight
increase in attraction to kF a ≈ 2.5 renders the system unstable. A cold unpolarized system in a
harmonic trap at unitarity should phase separate into three regions: a normal state with a large
heavy to light ratio in the center, followed by a shell of fully paired superfluid in the middle and
either a polarized superfluid or a nearly fully polarized normal state in the exterior.

PACS numbers: 03.75.Ss, 05.30.Fk, 03.75.Hh, 67.85.-d

Superfluid pairing and the equation of state of cold
trapped atoms in the unitary regime have recently been
the subject of intense theoretical and experimental in-
vestigation [1, 2]. These systems are closely related to
strongly interacting fermions in other regimes, such as
neutron matter [3, 4] and dense quark matter [5], and
hence are useful as prototypes and benchmarks in many
areas of physics. At unitarity, all physical quantities are
simply given by dimensionless numbers times the rel-
evant free Fermi gas quantity. Theoretical predictions
based upon Quantum Monte Carlo (QMC) calculations
for these dimensionless numbers – including the ground-
state superfluid energy ξ = Esf/EFG ≈ 0.4 [6, 7, 8]
and pairing gap η = ∆/EF ≈ 0.5 [6, 8, 9], and the first-
order phase transition between an unpolarized superfluid
and a normal state at finite polarization or concentration
xc = n↓/n↑ ≈ 0.44 [10, 11, 12] – are in good agreement
with recent experiments [13, 14, 15].

An intriguing variation of this problem is pairing be-
tween particles with different masses, which is within ex-
perimental reach [16, 17] and has already sparked consid-
erable theoretical interest [18, 19, 20, 21, 22, 23, 24, 25].
The most promising candidate is a mixture of 6Li and
40K s-wave Feshbach resonances, for which the mass ra-
tio r ≈ 6.5. A heavy-light fermion mixture may be more
likely to exhibit exotic phases, like LOFF [26], while for
higher mass ratios or more attractive interactions Efimov
states are expected to appear.

We consider an interaction of the form:

H =
∑

i=1,nl

−!2

2ml
∇

2
i +

∑

j=1,nh

−!2

2mh
∇

2
j +

∑

i,j

V (rij), (1)

where h denotes a heavy particle and l denotes a
light particle, with a mass ratio r = mh/ml, and a
zero-range interaction between light and heavy particles

with strength tuned to infinite scattering length in the
unequal-mass pair. Mean-field BCS theory for unequal-
mass pairing predicts a simple scaling of the equation of
state in terms of the reduced mass µ = mlmh/(ml +mh).
If we define the average chemical potential by µ̄ = (µh +
µl)/2 then µ̄ and the pairing gap ∆ remain unchanged

in units of the reduced Fermi energy Eµ
F = !

2

4µ(3π2ρ)2/3 ,
where ρ is the total particle density.

The heavy and light excitation energies naturally de-
pend upon the masses mh and ml individually. The en-
ergies of the heavy and light excitations are:

Eh(l)(k) =
ξh(l)(k) − ξl(h)(k)

2
+

√

(

ξh(k) + ξl(k)

2

)2

+ ∆2(k), (2)

where ξh(l)(k) = !
2k2

2mh(l)
− µh(l). Even so, the average of

Eh(k) and El(k) depends only upon the reduced mass µ,
as does the gap ∆(k).

There is no a priori reason to believe that the BCS
results should be accurate. We have performed QMC
calculations of the homogeneous superfluid phase, exam-
ining the quasi-particle dispersion as a function of the
momentum. The methods are those employed previously
in the equal-mass case [8, 9], using a Pöschl-Teller poten-
tial with an effective range of r0/12, where 4/3πr3

0 = 1/ρ.
The simulations provide the fixed-node upper bound to
the energy, while the superfluid and normal trial wave
functions are of the same form as that used previously.

For a mass ratio of 6.5, we obtain a ground-state en-
ergy ξ(r = 6.5) = 0.390(5), slightly lower than the ξ(r =
1) = 0.41(1) obtained for the same interaction with equal
masses. The latter extrapolates to ξ(r = 1) = 0.40(1) at
zero effective range; we have verified that similar small
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Superfluid Fermi Gases with Large Scattering Length

J. Carlson,1 S-Y Chang,2 V. R. Pandharipande,2 and K. E. Schmidt2, ∗
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We report quantum Monte Carlo calculations of superfluid Fermi gases with short-range two-body
attractive interactions with infinite scattering length. The energy of such gases is estimated to be
(0.44 ± 0.01) times that of the noninteracting gas, and their pairing gap is approximately twice the
energy per particle. PACS: 03.75.Fi, 05.30.Fk, 21.65.+F

In dilute Fermi gases the pair interactions have a range
much smaller than the interparticle spacing. However,
when the two-particle scattering length is large, these
short range interactions can modify the gas properties
significantly. A well known example is low density neu-
tron matter which may occur in the inner crust of neu-
tron stars [1]. The two-neutron interaction has a range
of ∼ 2 fm, but the scattering length is large, −18 fm,
so that even at densities as small as one percent of the
nuclear density the parameter akF has magnitude much
larger than one. Bertsch proposed in 1998 that solution
of the idealized problem of a dilute Fermi gas in the limit
akF → −∞ could give useful insights into the properties
of low density neutron gas.

Cold dilute gases of 6Li atoms have been produced in
atom traps. The interaction between these atoms can
be tuned using a known Feshbach resonance; and the
estimated value of akF in the recent experiment [2] is
∼ −7.4. As the interaction strength is increased beyond
that for a = −∞, we get bosonic two-fermion bound
states. In this sense a dilute Fermi gas with large a is in
between weak coupling BCS superfluid and dilute Bose
gases with Bose-Einstein condensation [3]. Attempts to
produce Bose gases in the limit, a/r0 → ∞ using Fesh-
bach resonances [4, 5], are in progress, and their energy
has been recently estimated using variational methods
[6].

In the a → −∞ limit k2
F /m is the only energy scale,

and the ground state energy of the interacting dilute
Fermi gas is proportional to the noninteracting Fermi gas
energy:

E0(ρ) = ξ EFG = ξ
3

10

k2
F

m
. (1)

Baker [7] and Heiselberg [8] have attempted to obtain the
value of the constant ξ from expansions of the Fermi gas
energy in powers of akF . Heiselberg obtained ξ = 0.326,
while Baker’s values are ξ = 0.326 and 0.568.

Fermi gases with attractive pair interaction become su-
perfluid at low temperature. The BCS expressions in
terms of the scattering length were given by Leggett [9],
and they were used to study the properties of superfluid
dilute Fermi gases, as a function of akF , by Engelbrecht,
Randeria and Sá de Melo [10]. For akF = −∞ they

obtain an upperbound, ξ = 0.59, using the BCS wave
function. These gases are also estimated to have large
gaps comparable to the ground state energy per particle.

Here we report studies of Fermi gases with quantum
Monte Carlo methods using the model potential:

v(r) = −
2

m

µ2

cosh2(µr)
. (2)

The zero energy solution of the two-body Schrödinger
equation with this potential is tanh(µr)/r and corre-
sponds to a = −∞. The effective range is 2/µ, and in
order to ensure that the gas is dilute we use µr0 > 10,
where r0 is the unit radius; ρr3

0 = 3/4π. All the results
presented here are for µr0 = 12; however some of the
calculations were repeated for µr0 = 24 and the results
extrapolated to 1/µ → 0.

We have carried out fixed node Green’s function Monte
Carlo [11] (FN-GFMC) calculations with trial wave func-
tions of the form:

ΨV (R) =
∏

i,j′

f(rij′ )Φ(R) , (3)

where i, j, ... and i′, j′, ... label spin up and down parti-
cles, and the configuration vector R gives the positions of
all the particles. Only the antiparallel spin pairs are cor-
related in this ΨV with the Jastrow function f(rij′ ). The
parallel spin pairs do not feel the short range interaction
due to Pauli exclusion.

In FN-GFMC the ΨV is evolved in imaginary time with
the operator e−Hτ while keeping its nodes fixed to avoid
the fermion sign problem. In the limit τ → ∞ it yields
the lowest energy state with the nodes of ΨV . These
nodes, and hence the FN-GFMC energies, do not depend
upon the positive definite Jastrow function. Nevertheless
it is useful to reduce the variance of the FN-GFMC calcu-
lation. In the present work we use approximate solutions
of the two-body Schrödinger equation:

[

−
1

m
∇2 + v(r)

]

f(r < d) = λf(r < d) , (4)

with the boundary conditions f(r > d) = 1 and f ′(r =
d) = 0 [6]. The value of d is obtained by minimizing the
energy calculated using variational Monte Carlo. Note

Take the limit μ → 0
Single scale in the problem: kF = (3 π2 ρ)1/3

E = ξ EFG = ξ (3/5) kF2/ (2m)
Δ= δ EF = δ kF2/ (2m)
C = 8 π2 ρ2 A2 = ς (2 kF4 / (5 π)) 

g(r) → A2/ r2

Rich Experimental Control and Probes: 
phase diagram, `exotic’ superfluids, RF response,...

Continuum



Equal Masses: Improved DMC calculations 
Forbes, Gezerlis, Gandolfi (2010)
Gandolfi, Schmidt, Carlson (2010)

Pair function
optimized variationally
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FIG. 1. (color online) Energy per particle in the BEC-BCS
crossover regime in units of EFG as a function of the scattering
length a. The QMC points are the results of extrapolations
to re → 0 limit. In the inset we show the extrapolation at
unitarity.
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FIG. 2. (color online) The calculated spin-opposite two-body
distribution function at small distance r. The VMC (red),
mixed (green) and extrapolated (blue) results are shown. The
extrapolated QMC results are used to fit the function giving
b = 1.2678. In the inset we show the same functions multi-
plied by (kF r)

2.

example at unitarity in the inset of Fig. 1 where we plot

QMC points at different effective ranges, and their ex-

trapolation. Using more points and a more complex fit

typically provides a somewhat lower upper bound to the

energy [23]; such a correction is about 0.002 to ξ, but
here we limit our calculations to a linear extrapolation

by leaving these very small corrections to future work.

We optimized the many–body wave function for sys-

tems with different scattering lengths and for each value

of kFa we repeated the extrapolation of re. Our re-

sults of ξ(kFa) are shown in Fig. 1. Fitting the QMC

points shown in Fig. 1 gives the values ξ = 0.383(1),

L2

4π2 k
2 a(k2) L2

4π2 k
2 a(k2)

0 0.00198 5 0.000190
1 0.00250 6 0.000200
2 0.00194 8 0.000167
3 0.00081 9 0.000163
4 0.00033 10 0.000120

TABLE I. The optimized plane wave coefficients at unitarity
for the pairing function.

ζ = 0.901(2) and ν = 0.49(2). Using Eq. 5 we predict

C

k4F
=

2ζ

5π
= 0.1147(3) . (10)

An alternative direct method for calculating the con-

tact can be obtained by computing correlation functions

at unitarity. For example, the pair distribution function

is shown in Fig. 2, where we compare the VMC result

with the mixed estimate computed with DMC. The two

results are almost identical and differences appear only

for very small distances. The value of ζ is obtained by

fitting g↑↓(kF r) in the range re � r � k−1
F using the

function a + b/r2. The fit gives b = 1.2678(1). Using

Eqs. 2 and 5, gives the value for ζ = 0.897(2) in good

agreement with the result extracted from Eq. 6.

The calculated radial one-body density matrix

ρ(1)(kF r) is shown in Fig. 3 using VMC and the mixed

DMC results. Again the results are nearly identical, with

strikingly linear behavior over a large range of small kF r
values. The fit gives ζ = 0.895(16) again in good agree-

ment with the equation of state result. The calculated
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FIG. 3. (color online) The radial one-body density matrix,
symbols as in Fig. 2. A line showing the linear fit with
c = 0.2685 is also shown, the dominant short-range behavior
is accurate up to approximately kF r ∼ 3.

momentum distribution is shown in Fig. 4. The momen-

tum distribution and the one-body density matrix are

each other’s Fourier transform. The only difference in

our calculations are that the angular average has been

Upper Bound to the Energy
Applicable to polarized, unequal mass,...

Canonical Ensemble
Dilute
Periodic Boundary Conditions
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FIG. . (color online) Ground-state energy-density ξ = E/EFG
of N+ fermions in a periodic cubic box at the unitary limit.
The circles with error bars are the result of using a quadratic
least-squares extrapolation to zero effective range of our new
qmc results. The solid curve is the best fit slda dft. The
light dotted curve is the functional considered in [] with
α = 0.69. For comparison, we have plotted the previous best
estimate ξS = 0.40(1) (red square) and the current estimate
ξS = 0.383(1) below it to the far right of the figure.

sion of an anomalous density is crucial: functionals at-
tempting to model the superfluid by adding only gra-
dient or kinetic corrections [, ] are unable to even
qualitatively characterize the finite-size effects.
Our qmc results are based on a Diffusion Monte Carlo

approach that projects out the excited-state contribu-
tions from a variational starting wave function, provid-
ing an upper bound for the energy. We take the wave
function to have a Jastrow-bcs form, as first discussed in
Ref. [], but implement a more efficient procedure for
variationally optimizing its parameters. We thereby ob-
tain a substantially lower bound on the energy than any
previously reported qmc calculation.
Our qmc approach simulates the Hamiltonian:

H =
!2

2m













−

N+
∑

k=1

∇2k − 4v0µ
2
∑

i,j ′

sech2(µrij ′ )













, ()

with an inter-species interaction of the modified Pöschl-
Teller type (off-resonance intra-species interactions are
neglected). We tune the s-wave scattering length to in-
finity by setting v0 = 1: the effective range becomes
re = 2/µ. To extrapolate to the zero-range limit, we sim-
ulate at µ/kF ∈ {12.5,24,36,48,60}. These lead to con-
siderably shorter ranges (0.03 < kFre < 0.16) than previ-
ously cited in the literature; a careful examination of ad-
ditional ranges kFre < 0.35 for the N+ = 40 and N+ = 66
reveals that a three-parameter quadratic model in re is
necessary and sufficient to extrapolate our data with-
out a systematic bias: larger ranges require higher order.
The extrapolated energies are shown in Fig. .

The energies exhibit definite finite-size (shell) effects
for N+ ! 50, but are essentially featureless for larger
N+. This lack of structure is confirmed by the best fit
dft (discussed below) and disagrees with the results pre-
sented in Ref. []. The values of ξ for N+ > 50 are dis-
tributed about the best fit value ξS ≈ 0.383(1), and rep-
resent the lowest variational bounds to date. Part of the
decrease from previous results is due to the careful ex-
trapolation to zero effective range: the best fit quadratic
is concave down, implying that linear extrapolations sys-
tematically overestimate ξS . The remainder is due to the
improved optimization of the variational wave function.
To model the finite-size effects we turn to a local dft

for the unitary Fermi gas that generalizes the slda origi-
nally presented in Ref. []. In addition to the total den-
sity n+, the slda includes both a kinetic density τ+ and
an anomalous density ν. (The + index signifies the sum
of the contributions coming from the two components a
and b.) These are expressed in terms of the Bogoliubov
quasiparticle wave functions un(r) and vn(r):

τ+ = 2
∑

n

|∇vn|
2, n+ = 2

∑

n

|vn|
2, ν =

∑

n

unv
∗
n.

The original -parameter slda functional has the form

Eslda =
!2

m

(α

2
τ+ + β

3

10
(3π2)2/3n5/3+

)

+ gν†ν , ()

where α is the inverse effective mass; β is the self-energy;
and γ , which controls the pairing, enters through the

regularized coupling g = 1/(n1/3+ /γ − Λ/α) where Λ →
∞ is a momentum cutoff that we take to infinity (see
Ref. [] for details). Using the equations for homoge-
neous matter in the thermodynamic limit, one can nu-
merically replace the parameters β and γ with the more
physically relevant quantities ξS and η = ∆/EF , where ∆
is the pairing gap.
In principle, the dft can be expressed in terms of only

the density n+ and its gradients. Local formulations
of this type are referred to as Extended Thomas-Fermi
(etf) functionals and have been considered in Refs. [].
Since the ground state in a periodic box is homogeneous,
the gradient terms vanish, and the functional takes the
form Eetf(n+) = ξSEFG. The simplest form thus exhibits
no shell effects and is in contradiction with the qmc re-
sults. This deficiency can be rectified by introducing
an explicit dependence on the “dimensionless parame-
ter N+”, but such a functional has no predictive power:
each finite-size system must be independently fit.
Reference [] considered adding the kinetic density

τ+ and effective mass α. This produces shell structure,
but without an anomalous density the effects are much
too large: the best fit to the qmc results drives α → 0
reproducing the flat etf results, indicating that the shell
structure of this dft has essentially no correlation with
the shell structure exhibited by the qmc. Furthermore,

Finite Volume Effects
Forbes, Gezerlis, Gandolfi (2010)



Lattice Approaches (in progress)

Equivalent to attractive Hubbard model in dilute limit
No sign problem, but dilute limit non-trivial
Canonical approach (more efficient for T=0)

Evolve N single-particle wave functions w/ exp [ - H τ ]
Kinetic Energy diagonal in momentum space
Interaction set in auxiliary fields, tuned to give

zero-energy bound state on infinite lattice
Auxiliary fields for interaction sampled by MC



Example:  Kinetic Energy

Hubbard model (nearest neighbor hopping)
k2 / (2m)           (easily evaluated via FFT)
   + O(k4)          match 2-body spectra (effective range) 

Different operators lead to same continuum result
Simplest Interaction is the Hubbard Model:

On-site repulsion
Nearest-neighbor hopping



BCS on the lattice
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Preliminary Results
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Energy vs L for different dispersions, N = 66



Contact (Shina Tan)

ψ → α/r

Controls short-distance (high-momentum) dynamics

n(k) → 1/k4

Since interaction is zero-ranged, can be measured in EOS
Also controls high-energy part of RF response



Contact and the
EOS near unitarity

2

where g↑↓(r → ∞) = 1
2 for an unpolarized system. The

momentum distribution summed over both spins will also
be dominated by this short range part of the wave func-
tion, so for k much greater than the Fermi momentum
kF but much less than the potential range, we have

N(k) =n

�
d
3
r dRΨ(r1 + r, . . . , rN )Ψ(r1, . . . , rN )e−ik·r

= n
2

�
d
3
r d

3
r
�
f(|r+ r�|)f(r�)e−ik·r =

16π2
n
2
A

2

k4
,

where dR indicates integration over r1, . . . , rN , and n is
the number density. Fourier transforming the momen-
tum distribution and the two-body distribution functions
gives the behavior for the one-body density matrix (nor-
malized to 1 at the origin) and the opposite spin static
structure factor (which goes to 1

2 for k → ∞) of

ρ(1)(r) = 1− 2πnA2
r + . . .

S↑↓(k)−
1

2
=

2π2
nA

2

k

�
1− 1

4πak

�
+ . . . . (3)

Tan also related the contact parameter to the deriva-
tive of the energy with respect to the inverse scattering
length. Changing the scattering length by changing the
potential with the mass fixed and using the Hellman-
Feynman theorem [16, 17]

dE

da−1
=

n

2

�
d
3
r g↑↓(r)

dv(r)

da−1
(4)

where E is the energy per particle. Since v(r) is
nonzero only inside R, where the two-body potential
is very strong, g(r) can be replaced with f

2(r) where
�2

m∇2
f(r) = v(r)f(r) and the integration taken over a

sphere of radius R. Therefore

dE

da−1
=

n

2

�
d

da−1

�
d
3
r f

2(r)v(r)− 2

�
d
3
r f(r)v(r)

df(r)

da−1

�

=
2π�2n
m

R
2

�
d

da−1
f(r)

df(r)

dr
− 2

df(r)

da−1

df(r)

dr

�����
r=R

.

This only depends on f(r) around R, and using Eq. 1
the result is

dE

da−1
= −�22πnA2

m
→ C = 8π2

n
2
A

2
. (5)

The equation of state and therefore Tan’s C [18] can
be conventionally parametrized around unitarity as[4]

E

EFG
= ξ − ζ

kFa
− 5ν

3(kFa)2
+ . . . , (6)

where EFG = 3�2k2
F

10m is the infinite system free gas en-
ergy per particle. At unitarity we have several quantities
related to ζ:

ρ(1)(r) → 1− 3

10
ζkF r , N(k) → 8

10π
ζ
k
4
F

k4

g↑↓(r) →
9π

20
ζ(kF r)

−2
, S↑↓(k) →

3π

10
ζ
kF

k
. (7)

We use Quantum Monte Carlo (QMC) techniques to
accurately solve the many-body ground state, and com-
pute properties of the unitary Fermi gas. Our QMC cal-
culations use the many–body Hamiltonian,

H =
N�

i=1

p
2
i

2m
− v0

8�2
mr2e

�

i↑,j↓

1

cosh2(2rij/re)
, (8)

where the two–body interaction is a a short–range poten-
tial taken only between opposite spin particles. At uni-
tarity, v0 = 1 and the effective range is re. The scattering
length and effective range can be tuned by changing v0

and re. The limit of zero effective range (dilute system)
is reached by taking re � r0, with r0 = (3/(4πn))1/3.
The unitary limit is approached when r0 � a where a

is the scattering length of the two–body interaction. At
unitarity the details of the interaction are not important,
and the only scale of the system is given by its Fermi mo-
mentum kF . The ansatz for the many–body trial wave
function is the same as previously used in other QMC
calculations [19–21]:

ΨT =
�

ij

fij� ΦBCS , ΦBCS = A[φ(r11�)φ(r22�)...φ(rnn�)]

where A antisymmetrizes the like spins, and the un-
primed coordinates are for up spins and the primed are
for down spins and n = N/2. The pairing function is
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�
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dbr
. (9)

The function β̃(r) has a range of L/2, the value of c is
chosen such that it has zero slope at the origin.
The variational wave function has been carefully op-

timized; in particular we optimize the pairing orbitals
entering in the wave function by using VMC to mini-
mize the energy[22]. The fixed-node DMC energies do
not depend on the Jastrow function f . Our simulations
are performed with 66 particles in a periodic box, and we
study the effect of the effective range of the interaction
by changing re and extrapolating to the re → 0 limit.
The results of 66 particles is very close to the infinite
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function significantly improves the energy upper bounds.
At unitarity, the best previous QMC results using 66
particles are ξ = 0.42(1) fixing re/r0 ≈ 0.08 [24], and
ξ = 0.42(1) using re/r0 ≈ 0.01 [25]. Our new estimate
is ξ = 0.4069(5) and ξ = 0.3923(4) with re/r0 ≈ 0.08
and 0.02 respectively. The parameters for φ at unitarity
are b = 0.5kF , d = 5 and the nonzero a(k2) are given in
Table I. Improved optimization of the trial wave function
lowers the fixed-node energy by 4–7%. Careful extrap-
olation to re → 0 limit is also important. We show an
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example at unitarity in the inset of Fig. 1 where we plot

QMC points at different effective ranges, and their ex-

trapolation. Using more points and a more complex fit

typically provides a somewhat lower upper bound to the

energy [23]; such a correction is about 0.002 to ξ, but
here we limit our calculations to a linear extrapolation

by leaving these very small corrections to future work.

We optimized the many–body wave function for sys-

tems with different scattering lengths and for each value

of kFa we repeated the extrapolation of re. Our re-

sults of ξ(kFa) are shown in Fig. 1. Fitting the QMC

points shown in Fig. 1 gives the values ξ = 0.383(1),

L2

4π2 k
2 a(k2) L2

4π2 k
2 a(k2)

0 0.00198 5 0.000190
1 0.00250 6 0.000200
2 0.00194 8 0.000167
3 0.00081 9 0.000163
4 0.00033 10 0.000120

TABLE I. The optimized plane wave coefficients at unitarity
for the pairing function.

ζ = 0.901(2) and ν = 0.49(2). Using Eq. 5 we predict

C

k4F
=
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5π
= 0.1147(3) . (10)

An alternative direct method for calculating the con-

tact can be obtained by computing correlation functions

at unitarity. For example, the pair distribution function

is shown in Fig. 2, where we compare the VMC result

with the mixed estimate computed with DMC. The two

results are almost identical and differences appear only

for very small distances. The value of ζ is obtained by

fitting g↑↓(kF r) in the range re � r � k−1
F using the

function a + b/r2. The fit gives b = 1.2678(1). Using

Eqs. 2 and 5, gives the value for ζ = 0.897(2) in good

agreement with the result extracted from Eq. 6.

The calculated radial one-body density matrix

ρ(1)(kF r) is shown in Fig. 3 using VMC and the mixed

DMC results. Again the results are nearly identical, with

strikingly linear behavior over a large range of small kF r
values. The fit gives ζ = 0.895(16) again in good agree-

ment with the equation of state result. The calculated
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typically provides a somewhat lower upper bound to the

energy [23]; such a correction is about 0.002 to ξ, but
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QMC points at different effective ranges, and their ex-

trapolation. Using more points and a more complex fit

typically provides a somewhat lower upper bound to the

energy [23]; such a correction is about 0.002 to ξ, but
here we limit our calculations to a linear extrapolation

by leaving these very small corrections to future work.
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tems with different scattering lengths and for each value
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points shown in Fig. 1 gives the values ξ = 0.383(1),

L2

4π2 k
2 a(k2) L2

4π2 k
2 a(k2)

0 0.00198 5 0.000190
1 0.00250 6 0.000200
2 0.00194 8 0.000167
3 0.00081 9 0.000163
4 0.00033 10 0.000120

TABLE I. The optimized plane wave coefficients at unitarity
for the pairing function.

ζ = 0.901(2) and ν = 0.49(2). Using Eq. 5 we predict

C

k4F
=

2ζ

5π
= 0.1147(3) . (10)

An alternative direct method for calculating the con-

tact can be obtained by computing correlation functions

at unitarity. For example, the pair distribution function

is shown in Fig. 2, where we compare the VMC result

with the mixed estimate computed with DMC. The two

results are almost identical and differences appear only

for very small distances. The value of ζ is obtained by
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here we limit our calculations to a linear extrapolation

by leaving these very small corrections to future work.

We optimized the many–body wave function for sys-

tems with different scattering lengths and for each value

of kFa we repeated the extrapolation of re. Our re-

sults of ξ(kFa) are shown in Fig. 1. Fitting the QMC

points shown in Fig. 1 gives the values ξ = 0.383(1),

L2

4π2 k
2 a(k2) L2

4π2 k
2 a(k2)

0 0.00198 5 0.000190
1 0.00250 6 0.000200
2 0.00194 8 0.000167
3 0.00081 9 0.000163
4 0.00033 10 0.000120

TABLE I. The optimized plane wave coefficients at unitarity
for the pairing function.

ζ = 0.901(2) and ν = 0.49(2). Using Eq. 5 we predict

C

k4F
=

2ζ

5π
= 0.1147(3) . (10)

An alternative direct method for calculating the con-
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2

where g↑↓(r → ∞) = 1
2 for an unpolarized system. The

momentum distribution summed over both spins will also
be dominated by this short range part of the wave func-
tion, so for k much greater than the Fermi momentum
kF but much less than the potential range, we have

N(k) =n

�
d
3
r dRΨ(r1 + r, . . . , rN )Ψ(r1, . . . , rN )e−ik·r

= n
2

�
d
3
r d

3
r
�
f(|r+ r�|)f(r�)e−ik·r =

16π2
n
2
A

2

k4
,

where dR indicates integration over r1, . . . , rN , and n is
the number density. Fourier transforming the momen-
tum distribution and the two-body distribution functions
gives the behavior for the one-body density matrix (nor-
malized to 1 at the origin) and the opposite spin static
structure factor (which goes to 1

2 for k → ∞) of

ρ(1)(r) = 1− 2πnA2
r + . . .

S↑↓(k)−
1

2
=

2π2
nA

2

k

�
1− 1

4πak

�
+ . . . . (3)

Tan also related the contact parameter to the deriva-
tive of the energy with respect to the inverse scattering
length. Changing the scattering length by changing the
potential with the mass fixed and using the Hellman-
Feynman theorem [16, 17]

dE

da−1
=

n

2

�
d
3
r g↑↓(r)

dv(r)

da−1
(4)

where E is the energy per particle. Since v(r) is
nonzero only inside R, where the two-body potential
is very strong, g(r) can be replaced with f

2(r) where
�2

m∇2
f(r) = v(r)f(r) and the integration taken over a

sphere of radius R. Therefore

dE

da−1
=

n

2

�
d

da−1

�
d
3
r f

2(r)v(r)− 2

�
d
3
r f(r)v(r)

df(r)

da−1

�

=
2π�2n
m

R
2

�
d

da−1
f(r)

df(r)

dr
− 2

df(r)

da−1

df(r)

dr

�����
r=R

.

This only depends on f(r) around R, and using Eq. 1
the result is

dE

da−1
= −�22πnA2

m
→ C = 8π2

n
2
A

2
. (5)

The equation of state and therefore Tan’s C [18] can
be conventionally parametrized around unitarity as[4]

E

EFG
= ξ − ζ

kFa
− 5ν

3(kFa)2
+ . . . , (6)

where EFG = 3�2k2
F

10m is the infinite system free gas en-
ergy per particle. At unitarity we have several quantities
related to ζ:

ρ(1)(r) → 1− 3

10
ζkF r , N(k) → 8

10π
ζ
k
4
F

k4

g↑↓(r) →
9π

20
ζ(kF r)

−2
, S↑↓(k) →

3π

10
ζ
kF

k
. (7)

We use Quantum Monte Carlo (QMC) techniques to
accurately solve the many-body ground state, and com-
pute properties of the unitary Fermi gas. Our QMC cal-
culations use the many–body Hamiltonian,

H =
N�

i=1

p
2
i

2m
− v0

8�2
mr2e

�

i↑,j↓

1

cosh2(2rij/re)
, (8)

where the two–body interaction is a a short–range poten-
tial taken only between opposite spin particles. At uni-
tarity, v0 = 1 and the effective range is re. The scattering
length and effective range can be tuned by changing v0

and re. The limit of zero effective range (dilute system)
is reached by taking re � r0, with r0 = (3/(4πn))1/3.
The unitary limit is approached when r0 � a where a

is the scattering length of the two–body interaction. At
unitarity the details of the interaction are not important,
and the only scale of the system is given by its Fermi mo-
mentum kF . The ansatz for the many–body trial wave
function is the same as previously used in other QMC
calculations [19–21]:

ΨT =
�

ij

fij� ΦBCS , ΦBCS = A[φ(r11�)φ(r22�)...φ(rnn�)]

where A antisymmetrizes the like spins, and the un-
primed coordinates are for up spins and the primed are
for down spins and n = N/2. The pairing function is

φ(r) = β̃(r) +
�

n

a(k2n) exp[ikn · r] ,

β̃(r) = β(r) + β(L− r)− 2β(L/2) ,

β(r) = [1 + cbr] [1− exp(−dbr)]
exp(−br)

dbr
. (9)

The function β̃(r) has a range of L/2, the value of c is
chosen such that it has zero slope at the origin.
The variational wave function has been carefully op-

timized; in particular we optimize the pairing orbitals
entering in the wave function by using VMC to mini-
mize the energy[22]. The fixed-node DMC energies do
not depend on the Jastrow function f . Our simulations
are performed with 66 particles in a periodic box, and we
study the effect of the effective range of the interaction
by changing re and extrapolating to the re → 0 limit.
The results of 66 particles is very close to the infinite
limit [23]. Careful optimization of the variational wave
function significantly improves the energy upper bounds.
At unitarity, the best previous QMC results using 66
particles are ξ = 0.42(1) fixing re/r0 ≈ 0.08 [24], and
ξ = 0.42(1) using re/r0 ≈ 0.01 [25]. Our new estimate
is ξ = 0.4069(5) and ξ = 0.3923(4) with re/r0 ≈ 0.08
and 0.02 respectively. The parameters for φ at unitarity
are b = 0.5kF , d = 5 and the nonzero a(k2) are given in
Table I. Improved optimization of the trial wave function
lowers the fixed-node energy by 4–7%. Careful extrap-
olation to re → 0 limit is also important. We show an
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example at unitarity in the inset of Fig. 1 where we plot

QMC points at different effective ranges, and their ex-

trapolation. Using more points and a more complex fit

typically provides a somewhat lower upper bound to the

energy [23]; such a correction is about 0.002 to ξ, but
here we limit our calculations to a linear extrapolation

by leaving these very small corrections to future work.

We optimized the many–body wave function for sys-

tems with different scattering lengths and for each value

of kFa we repeated the extrapolation of re. Our re-

sults of ξ(kFa) are shown in Fig. 1. Fitting the QMC

points shown in Fig. 1 gives the values ξ = 0.383(1),

L2

4π2 k
2 a(k2) L2

4π2 k
2 a(k2)

0 0.00198 5 0.000190
1 0.00250 6 0.000200
2 0.00194 8 0.000167
3 0.00081 9 0.000163
4 0.00033 10 0.000120

TABLE I. The optimized plane wave coefficients at unitarity
for the pairing function.

ζ = 0.901(2) and ν = 0.49(2). Using Eq. 5 we predict
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5π
= 0.1147(3) . (10)

An alternative direct method for calculating the con-

tact can be obtained by computing correlation functions

at unitarity. For example, the pair distribution function

is shown in Fig. 2, where we compare the VMC result

with the mixed estimate computed with DMC. The two

results are almost identical and differences appear only

for very small distances. The value of ζ is obtained by

fitting g↑↓(kF r) in the range re � r � k−1
F using the

function a + b/r2. The fit gives b = 1.2678(1). Using

Eqs. 2 and 5, gives the value for ζ = 0.897(2) in good

agreement with the result extracted from Eq. 6.

The calculated radial one-body density matrix

ρ(1)(kF r) is shown in Fig. 3 using VMC and the mixed

DMC results. Again the results are nearly identical, with

strikingly linear behavior over a large range of small kF r
values. The fit gives ζ = 0.895(16) again in good agree-

ment with the equation of state result. The calculated
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2

where g↑↓(r → ∞) = 1
2 for an unpolarized system. The

momentum distribution summed over both spins will also
be dominated by this short range part of the wave func-
tion, so for k much greater than the Fermi momentum
kF but much less than the potential range, we have

N(k) =n

�
d
3
r dRΨ(r1 + r, . . . , rN )Ψ(r1, . . . , rN )e−ik·r

= n
2

�
d
3
r d

3
r
�
f(|r+ r�|)f(r�)e−ik·r =

16π2
n
2
A

2

k4
,

where dR indicates integration over r1, . . . , rN , and n is
the number density. Fourier transforming the momen-
tum distribution and the two-body distribution functions
gives the behavior for the one-body density matrix (nor-
malized to 1 at the origin) and the opposite spin static
structure factor (which goes to 1

2 for k → ∞) of

ρ(1)(r) = 1− 2πnA2
r + . . .

S↑↓(k)−
1

2
=

2π2
nA

2

k

�
1− 1

4πak

�
+ . . . . (3)

Tan also related the contact parameter to the deriva-
tive of the energy with respect to the inverse scattering
length. Changing the scattering length by changing the
potential with the mass fixed and using the Hellman-
Feynman theorem [16, 17]

dE

da−1
=

n

2

�
d
3
r g↑↓(r)

dv(r)

da−1
(4)

where E is the energy per particle. Since v(r) is
nonzero only inside R, where the two-body potential
is very strong, g(r) can be replaced with f

2(r) where
�2

m∇2
f(r) = v(r)f(r) and the integration taken over a

sphere of radius R. Therefore

dE

da−1
=

n

2

�
d

da−1

�
d
3
r f

2(r)v(r)− 2

�
d
3
r f(r)v(r)

df(r)

da−1

�

=
2π�2n
m

R
2

�
d

da−1
f(r)

df(r)

dr
− 2

df(r)

da−1

df(r)

dr

�����
r=R

.

This only depends on f(r) around R, and using Eq. 1
the result is

dE

da−1
= −�22πnA2

m
→ C = 8π2

n
2
A

2
. (5)

The equation of state and therefore Tan’s C [18] can
be conventionally parametrized around unitarity as[4]

E

EFG
= ξ − ζ

kFa
− 5ν

3(kFa)2
+ . . . , (6)

where EFG = 3�2k2
F

10m is the infinite system free gas en-
ergy per particle. At unitarity we have several quantities
related to ζ:

ρ(1)(r) → 1− 3

10
ζkF r , N(k) → 8

10π
ζ
k
4
F

k4

g↑↓(r) →
9π

20
ζ(kF r)

−2
, S↑↓(k) →

3π

10
ζ
kF

k
. (7)

We use Quantum Monte Carlo (QMC) techniques to
accurately solve the many-body ground state, and com-
pute properties of the unitary Fermi gas. Our QMC cal-
culations use the many–body Hamiltonian,

H =
N�

i=1

p
2
i

2m
− v0

8�2
mr2e

�

i↑,j↓

1

cosh2(2rij/re)
, (8)

where the two–body interaction is a a short–range poten-
tial taken only between opposite spin particles. At uni-
tarity, v0 = 1 and the effective range is re. The scattering
length and effective range can be tuned by changing v0

and re. The limit of zero effective range (dilute system)
is reached by taking re � r0, with r0 = (3/(4πn))1/3.
The unitary limit is approached when r0 � a where a

is the scattering length of the two–body interaction. At
unitarity the details of the interaction are not important,
and the only scale of the system is given by its Fermi mo-
mentum kF . The ansatz for the many–body trial wave
function is the same as previously used in other QMC
calculations [19–21]:

ΨT =
�

ij

fij� ΦBCS , ΦBCS = A[φ(r11�)φ(r22�)...φ(rnn�)]

where A antisymmetrizes the like spins, and the un-
primed coordinates are for up spins and the primed are
for down spins and n = N/2. The pairing function is

φ(r) = β̃(r) +
�

n

a(k2n) exp[ikn · r] ,

β̃(r) = β(r) + β(L− r)− 2β(L/2) ,

β(r) = [1 + cbr] [1− exp(−dbr)]
exp(−br)

dbr
. (9)

The function β̃(r) has a range of L/2, the value of c is
chosen such that it has zero slope at the origin.
The variational wave function has been carefully op-

timized; in particular we optimize the pairing orbitals
entering in the wave function by using VMC to mini-
mize the energy[22]. The fixed-node DMC energies do
not depend on the Jastrow function f . Our simulations
are performed with 66 particles in a periodic box, and we
study the effect of the effective range of the interaction
by changing re and extrapolating to the re → 0 limit.
The results of 66 particles is very close to the infinite
limit [23]. Careful optimization of the variational wave
function significantly improves the energy upper bounds.
At unitarity, the best previous QMC results using 66
particles are ξ = 0.42(1) fixing re/r0 ≈ 0.08 [24], and
ξ = 0.42(1) using re/r0 ≈ 0.01 [25]. Our new estimate
is ξ = 0.4069(5) and ξ = 0.3923(4) with re/r0 ≈ 0.08
and 0.02 respectively. The parameters for φ at unitarity
are b = 0.5kF , d = 5 and the nonzero a(k2) are given in
Table I. Improved optimization of the trial wave function
lowers the fixed-node energy by 4–7%. Careful extrap-
olation to re → 0 limit is also important. We show an
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FIG. 4. (color online) The calculated momentum distribution

summed over both spins multiplied by k4/k4
F showing the k−4

tail. Dashed line show 2C/k4
F of Eq. 10

done in real space for the one-body density matrix to
give the radial one-body density matrix, while the mo-
mentum distribution is calculated for the k vectors that
correspond to the periodic simulation cell. The extrac-
tion of the k4 tail is rather noisy; using the radial one-
body density matrix gives a more accurate fit. From our
results it appears that the contact term dominates the
behavior for k � 2kF . Our asymptote is consistent with
the value 0.229(1) expected from ζ = 0.901(2) (dashed
line in Fig. 4).

Recent experiments have measured the contact pa-
rameter from the equation of state[6], momentum dis-
tribution directly using ballistic expansion and indi-
rectly through the rf line shape and photoemission
spectroscopy[8], and from the static structure factor[7].
Navon et al.[6] extracted a value of ζ = 0.93(5) from
their equation of state measurements. Our best value
of ζ = 0.901(3) is well within their experimental errors.
Kunhle et al.[7] calculate a slope of S(k) versus kF /k
at low k for 1/(kFa) = 0 of 0.75(3), giving a value of
ζ = 0.80(3), while Stewart et al. give values somewhat
away from unitarity which also give ζ lower than our
value.

In conclusion, we have used Quantum Monte Carlo
techniques to study the short-distance high-energy prop-
erties of unitary Fermi gases as encoded in Tan’s con-
tact parameter. The extractions from various observ-
ables all give the same result within statistical errors.
These Monte Carlo methods give particularly low vari-
ance values for the energy of the system and with min-
imal bias. Therefore extracting the contact parameter
from the equation of state is the simplest and most re-
liable. However, we have shown that its value extracted
from the two-body radial distribution function, the one-
body radial density matrix, and the momentum distri-
bution also give the same results albeit with somewhat

larger error bars. For each of these quantities we have
also determined the regime over which the leading con-
tact behavior is dominant, which should be useful to fu-
ture experiment in extracting the contact behavior and
leading corrections.
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Unequal Masses

BCS solution unchanged for different reduced mass
Equal mass solution good starting point
 
ξ (M/m = 6.5) -  ξ (M/m = 1) = -0.02

For a mass ratio of 6.5, we obtain a ground-state energy
!ðr ¼ 6:5Þ ¼ 0:390ð5Þ, slightly lower than the !ðr ¼ 1Þ ¼
0:41ð1Þ obtained for the same interaction with equal
masses. The latter extrapolates to !ðr ¼ 1Þ ¼ 0:40ð1Þ at
zero effective range; we have verified that similar small
extrapolations are present for unequal masses. The small
difference ($5%) between the ground-state energies from
r ¼ 1 to r ¼ 6:5 is a measure of the contribution of non-
zero total momentum pairs in the ground state. In QMC
calculations the ground state is determined by a diffusion
algorithm which depends upon the local energy and the
mass of the particles. For a pure BCS state, the local energy
H!T=!T is identical over the entire 3N-dimensional co-
ordinate space for different mass ratios. However, the total
mass of the pairs increases with r, resulting in a slightly
lower energy as the diffusion of the pair centers of mass is
reduced.

We have also calculated the quasiparticle excitation
energies for the light and heavy particles; the results are
shown in Fig. 1. The excitation energies shown for the light
(heavy) particles are calculated by subtracting the energy
of N=2 heavy and N=2 light particles from the energy
using a trial function with an additional light (heavy)
particle in a state of momentum k. Both simulations are
performed for the same volume L3 ¼ 3"2N=k3F. To facili-
tate comparison with the QMC results, the BCS lines
shown are EhðkÞ þ#h and ElðkÞ þ#l for the heavy and
light particles, respectively. Excitation energies for the
light particles are higher, and the minimum of the quasi-
particle dispersion shifts toward zero momentum.

We also compare the average of the light- and heavy-
particle dispersion relations to the dispersion obtained in

the equal-mass case. The two are very similar, much as
they would be in standard BCS theory. The superfluid
transition temperature would nevertheless decrease with
increasing mass ratio, as the average of the minimum
excitation energies in each branch is significantly lower
than the minimum energy at equal masses. We find this
average (calculated by subtracting "#) to be $ðr ¼ 6:5Þ ¼
0:38ð4Þ, in comparison to the calculated value $ðr ¼ 1Þ ¼
0:50ð5Þ in the equal-mass case. The individual spectra are
also important. For example, rf response experiments,
which have been used to explore the gap in the equal-
mass case [14], could be designed to be sensitive to the
individual light- and heavy-particle dispersion relations.
Away from equal populations, we explore the phase

diagram at zero temperature by considering normal and
gapless superfluid states using from 60 to 90 particles. For
calculations of the normal state, the trial wave functions
dictating the nodes are taken from free-particle Slater
determinants with filled-shell configurations in periodic
boundary conditions. In Fig. 2 we plot the ground-state
energy versus the polarization P ¼ ðNh & NlÞ=ðNh þ NlÞ,
in units of Emr

FG.
The circles are QMC calculations of the normal state and

the curve is a simple polynomial fit to the normal state
results as a function of polarization. The polynomial fit is
explicitly tied to the free-particle results at P ¼ '1, and to
the binding energy BhðlÞ of a single heavy (light) particle in
a sea of light (heavy) particles. With the majority particle
number NlðhÞ and the simulation volume L3 constant, we
find Bh ¼ 0:36El

F ¼ 0:99ð5ÞEmr
F and Bl ¼ 2:3Eh

F ¼
0:97ð5ÞEmr

F at r ¼ 6:5. With this definition the equal-
mass binding B ¼ 0:6EF. At constant total densities, these
results correspond to Bh ¼ 0:76El

F and Bl ¼ 2:7Eh
F, in

approximate agreement with results in Ref. [22]. By fitting
the dispersion of single impurities, we find m?

l =ml ¼ 1:3
and m?

h=mh ¼ 1:0.
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FIG. 1 (color online). Quasiparticle excitation energies for the
two different species. The QMC results are shown as diamonds
and squares for light and heavy particles, respectively. The BCS
results are shown as lines: the dashed line corresponds to light
particles, the dot-dashed line to heavy particles, while the solid
line to the results for the equal-mass case. Also shown are the
QMC results (circles) from Ref. [8] for the equal-mass case, as
well as the average (triangles) of the two QMC sets of points for
heavy and light particles.
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nomial best fit to the QMC results for the normal state.

PRL 103, 060403 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

7 AUGUST 2009

060403-2

Heavy-Light Fermion Mixtures at Unitarity

Alexandros Gezerlis,1,2 S. Gandolfi,3,4 K. E. Schmidt,5 and J. Carlson1

1Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

3S.I.S.S.A., International School of Advanced Studies, via Beirut 2/4, 34014 Trieste, Italy
4INFN, Sezione di Trieste, Trieste, Italy

5Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
(Received 20 January 2009; revised manuscript received 29 June 2009; published 5 August 2009)

We investigate fermion pairing in the unitary regime for a mass ratio corresponding to a 6Li-40K
mixture using quantum Monte Carlo methods. The ground-state energy and the average light- and heavy-

particle excitation spectrum for the unpolarized superfluid state are nearly independent of the mass ratio.

In the majority light system, the polarized superfluid is close to the energy of a phase separated mixture of

nearly fully polarized normal and unpolarized superfluid. For a majority of heavy particles, we find an

energy minimum for a normal state with a ratio of !3:1 heavy to light particles. A slight increase in

attraction to kFa " 2:5 yields a ground state energy of nearly zero for this ratio. A cold unpolarized

system in a harmonic trap at unitarity should phase separate into three regions, with a shell of unpolarized

superfluid in the middle.

DOI: 10.1103/PhysRevLett.103.060403 PACS numbers: 05.30.Fk, 03.75.Hh, 03.75.Ss, 67.85.#d

Superfluid pairing and the equation of state of cold
trapped atoms in the unitary regime have recently been
the subject of intense theoretical and experimental inves-
tigation [1,2]. These systems are closely related to strongly
interacting fermions in other regimes, such as neutron mat-
ter [3,4] and dense quark matter [5], and hence are useful as
prototypes and benchmarks in many areas of physics. At
unitarity, all physical quantities are simply given by di-
mensionless numbers times the relevant free Fermi gas
quantity. Theoretical predictions based upon quantum
Monte Carlo (QMC) calculations for these dimensionless
numbers—including the ground-state superfluid energy
! ¼ Esf=EFG " 0:4 [6–8], the pairing gap " ¼ !=EF "
0:5 [6,8,9], and the first-order phase transition between an
unpolarized superfluid and a normal state at finite polar-
ization or concentration xc ¼ n#=n" " 0:44 [10–12]—are
in good agreement with recent experiments [13–15].

An intriguing variation of this problem is pairing be-
tween particles with different masses, which is within
experimental reach [16,17] and has already sparked con-
siderable theoretical interest [18–26]. The most promising
candidate is a mixture of 6Li and 40K s-wave Feshbach
resonances, for which the mass ratio r " 6:5. A heavy-
light fermion mixture may be more likely to exhibit exotic
phases, like Larkin-Ovchinnikov-Fulde-Ferrell phases
[27], while for higher mass ratios or more attractive inter-
actions, Efimov states are expected to appear.

We consider an interaction of the form

H ¼
X

i¼1;Nl

#@2
2ml

r2
i þ

X

j¼1;Nh

#@2
2mh

r2
j þ

X

i;j

VðrijÞ; (1)

where h denotes a heavy particle and l denotes a light
particle, with a mass ratio r ¼ mh=ml, and a zero-range
interaction between light and heavy particles with strength

tuned to infinite scattering length in the unequal-mass pair.
Mean-field BCS theory for unequal-mass pairing predicts a
simple scaling of the equation of state in terms of the
reduced mass mr ¼ mlmh=ðml þmhÞ. If we define the
average chemical potential by "# ¼ ð#h þ#lÞ=2, then "#
and the pairing gap ! remain unchanged in units of the

reduced Fermi energy Emr
F ¼ @2

4mr
ð3$2nÞ2=3 ( @2k2F

4mr
, where

n is the total particle density.
The heavy and light excitation energies naturally depend

upon the masses mh and ml individually. The energies of
the heavy and light excitations are :

EhðlÞðkÞ ¼
!hðlÞðkÞ # !lðhÞðkÞ

2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
!hðkÞ þ !lðkÞ

2

#
2
þ!2ðkÞ

s
; (2)

where !hðlÞðkÞ ¼ @2k2
2mhðlÞ

##hðlÞ. Even so, the average of

EhðkÞ and ElðkÞ depends only upon the reduced mass mr,
as does the gap !ðkÞ.
There is no a priori reason to believe that the BCS

results should be accurate. We have performed QMC cal-
culations of the homogeneous superfluid phase, examining
the quasiparticle dispersion as a function of the momen-
tum. The methods are those employed previously in the
equal-mass case [8,9], using a modified Pöschl-Teller po-
tential with an effective range of r0=12, where 4=3$r30 ¼
1=n. The superfluid and normal phase trial wave functions
are of the same form as used previously, and provide fixed-
node upper bounds to the energy; the superfluid wave
function has been variationally reoptimized. Of course,
new physics corresponding to quite different nodal struc-
tures of more exotic trial functions (for example, LOFF
phases) is not excluded.
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Binding of One Heavy or One Light

B(H) = 0.36 EF(L)

B(L) = 2.3 EF(H)

effective mass ~1.0

effective mass ~ 1.3

Agreement w/ previous calculations
R. Combescot et al., Phys. Rev. Lett. 98, 180402 (2007)



We find an energy minimum near a polarization of 0.5,
corresponding to a ratio of 3:1 heavy to light particles. The
small value of the energy indicates a possible collapse of
the normal state at a mass ratio smaller than that found in
three-body calculations, where Efimov states and a col-
lapse begin at a mass ratio of 13.6 [19,24]. At unitarity with
this finite range potential we observe collapse (large nega-
tive energies and several particles within the interaction
range) before r ¼ 12. At a mass ratio r ¼ 6:5, we find that
the energy decreases quickly with interaction strength,
reaching zero at kFa " 2:5. These few-particle correla-
tions may increase loss rates and limit the effectiveness
of standard cooling techniques which sweep from the
Bose-Einstein condensation regime to the unitary regime.
As the mass ratio increases, the minimum in energy will
shift toward higher polarizations. It would be very interest-
ing to examine this evolution and the associated Fermi or
Bose condensates of odd and even clusters of fermions.

We also consider the possibility of polarized superfluids;
a simple case is the gapless superfluid where unpaired
particles are placed at the minimum of the dispersion
curves in Fig. 1. The energies for the gapless superfluid
state are shown as squares in Fig. 2. Over a range of
polarizations P< 0, we find the polarized superfluid has
a significantly lower energy than the homogeneous normal
state at the same density and polarization.

The results displayed in Fig. 2 can be used to determine
the stability of these phases. We use a polynomial fit to the
normal state to calculate the critical concentrations of
heavy and light particles and possible first-order phase
transitions that occur between the superfluid and the nor-
mal states at finite polarization. This is illustrated in Fig. 3,
where we plot the energy normalized to the free-particle

energy of the majority species at the relevant density to the
3=5 power as a function of the concentration x0 ¼ nh=nl
for the majority light-particle case and x ¼ nl=nh for the
majority heavy-particle case. The transition points can be
found by equating the pressures and chemical potentials of
the normal and superfluid states. For the case of majority
light species, the equilibrium concentration of heavy par-
ticles is extremely small, x0c ¼ 0:02ð2Þ, indicating equilib-
rium between a superfluid and a nearly fully polarized sea
of light particles. For the majority heavy case the critical
concentration is xc ¼ 0:49ð5Þ, near the concentration
found for the equal-mass case: xc ¼ 0:44 [10]. The tran-
sitions indicated in the figure are calculated from the
polynomial fits and indicated by dashed lines following
the tangent construction used in Ref. [11].
The polarized superfluid results are also shown in Fig. 3.

Over a range of polarizations P< 0 these states are very
close to stability with respect to the phase separated normal
state and unpolarized superfluid. It is possible that further
generalizations of the trial states, for example, by consid-
ering inhomogeneous polarized superfluids like LOFF
states, would lower the energy and provide a stable polar-
ized superfluid at zero temperature.
The pressures and chemical potentials calculated for the

superfluid and normal states can also be used to examine
what happens in a harmonic trap. Keeping the chemical
potentials !0

hðlÞ fixed and choosing the state of highest

pressure with local chemical potentials !hðlÞðrÞ ¼ !0
hðlÞ %

VhðlÞðrÞ, one can calculate, within the local-density ap-
proximation, the density for each species in the trap. In
general, the trapping potentials of the two species are
unequal; for this analysis we assume harmonic potentials
with a strength mh!

2
h=2 for the heavy particles equal to

twice that of the light potential strengthml!
2
l =2, similar to

that of a recent experiment on 6Li-40K mixtures [17].
In Fig. 4 we plot the local polarization as a function of

scaled radius for various total polarizations Ptot ¼ ðNh %
NlÞ=ðNh þ NlÞ where Nh and Nl are the total number of
heavy and light particles in the trap. Curves are shown for
Ptot ¼ %0:4, 0, 0.4, and 0.8. The radii are scaled in each
case so that within the local-density approximation the
density falls to zero at rsc ¼ 1. In this plot we assume
that the polarized superfluid is unstable at T ¼ 0. For large
total negative polarizations, the equilibrium configuration
is an unpolarized (P ¼ 0) superfluid in the center and a
nearly fully polarized sea of light particles in the exterior.
At a finite temperature the polarized superfluid state at P<
0 would appear, similar to what happens in the equal-mass
case. Because of the small energy differences, we expect
finite temperature effects to be even more important here.
Near zero total polarization, in contrast, three distinct

regions exist. In the center a normal state is favored with a
polarization near P ¼ 0:5; this is the lowest-energy normal
state of the system described earlier. At larger radius, there
is a shell of unpolarized superfluid, and then again in the
exterior a region of nearly all light particles, or potentially
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FIG. 3 (color online). Equation of state as a function of the
concentration x0 (left-hand panel) and x (right-hand panel).
Normal (circles) and superfluid states (squares) are shown. The
dashed lines are the coexistence lines between the normal and
the unpolarized superfluid states. The resulting critical concen-
trations are x0c ¼ 0:02 and xc ¼ 0:49. The dotted curves repre-
sent noninteracting impurities with the calculated binding
energies and effective masses.

PRL 103, 060403 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

7 AUGUST 2009

060403-3

Polarized Systems and Stable Phases



Local Density Approximation
for Harmonic Trap

a polarized superfluid. At this large mass ratio, this unusual
configuration is actually lower in energy than a homoge-
neous superfluid everywhere. Finally, for very large total
polarizations the system is normal everywhere, with the
polarization smoothly increasing from the center of the
trap as the radius increases. This is again analogous to what
happens in the equal-mass case for a large total polariza-
tion. It would be interesting to confirm this new structure
experimentally, to explore the stability and structure of the
polarized superfluid, and to determine its evolution with
mass ratio.

In summary, we performed QMC studies of heavy-light
fermion mixtures at unitarity. We find that the ground-state
energy of the superfluid and the average quasiparticle
dispersion agrees closely with the superfluid with equal
masses and the same reduced mass mr, as predicted by
BCS theory. In contrast, the system at finite polarization is
very different from the equal-mass case, resulting in sig-
nificantly different profiles of trapped systems, even for the
case of equal numbers of heavy and light particles.
Polarized superfluids are very near to stability for more
light than heavy particles. In the majority heavy case, we
find an energy minimum at approximately a 3:1 heavy to
light ratio which evolves rapidly with mass ratio and
interaction strength. The extra scale made available by
the mass ratio produces a variety of fascinating new physi-
cal effects in cold Fermi atoms near unitarity.
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Note added in proof.—An analysis of the phase diagram

of Fermi mixtures at unitarity was recently published [28].
It would be interesting to see this calculation repeated for
the equation of state that we have obtained.
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FIG. 4 (color online). The polarization of a trapped system as a
function of the radius (scaled so that at rsc ¼ 1 the density goes
to 0). Shown are curves for four different values of Ptot ¼ ðNh #
NlÞ=ðNh þ NlÞ.
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2

the two-body interaction for each pair:

V3(r, r
′) = v03

!2

2µ
λ2 cosh−2(λr) cosh−2(λr′). (3)

The two-heavy one-light problem has been investi-
gated by Nishida, et al.[9], who found a regime for
8.6 < M/m < 13.6 where the interaction can be fine-
tuned to produce three-body resonances. In a many-
body system these states would yield an interacting gas
of dimers and trimers. In this study they explicitly as-
sume that collapse of four- and five-body states are not
favored. However, for specific sets of geometrically sym-
metric heavy-particle coordinates (equilateral triangles
and regular tetrahedrons, respectively), Nishida[18] used
the Born-Oppenheimer approximation to study the static
potential between the heavy fermions. Significant addi-
tional attraction was found for these multi-particle states,
suggesting it is at possible that the larger clusters may be
bound at lower mass ratios than the two-heavy one-light
system.
Methods: We examine this possibility using Quantum

Monte Carlo techniques. The calculations employ vari-
ational states to give a variational upper bound to the
ground-state energy. We assume a trial wave function
ΨT = φLΦH , where φL is a positive definite function
of the light particle coordinates, and ΦH is an anti-
symmetric state of the heavy particle coordinates. All
coordinates are measured from the system center-of-mass
to avoid spurious CM motion.
The calculations are variational and hence produce an

upper bound to the ground state of the model Hamil-
tonian. We believe that these results are likely to be
accurate in most regimes, as the nodal surfaces (ΨT = 0)
are quite simple for these systems. For two, three, or four
particles it is possible to put all the fermions in relative
p-waves; larger systems require higher partial waves or
radial excitations. The simplest possible nodal surfaces
are, as in the Born-Oppenheimer approximation, inde-
pendent of the position of the light particle. They are
simply the projected length, projected area, and volume
of the line, triangle, and tetrahedron connecting the two,
three, and four heavy fermions, respectively:

Φ2
H = (r1 − r2)) · ẑ. (4)

Φ3
H = r3,12 × (r1 − r2) · ẑ.

Φ4
H = r4,123 · (r3,12 × (r1 − r2)),

where ri,jk is used to indicate the relative coordinate of
particle i from the center of mass of the pair or triplet jk.
These ground states have angular momentum L = 1, 1, 0,
respectively, for N = 2,3,4. Slightly lower energies are
obtained in the calculations reported here by putting the
heavy particles in s- and p-wave orbitals measured from
the system CM, yielding additional variational freedom.
Results: The results for the ground-state energies of

the two-, three-, and four- heavy, one light systems
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FIG. 1: (color online) Binding Energies versus mass ratio
M/m for 4H1L, 3H1L, and 2H1L systems with attractive two-
body potentials. Energies are given in terms of E0, energies
less than zero correspond to systems that will collapse as the
range of the interaction goes to zero. Filled symbols corre-
spond to the Poschl-Teller two-body potential and open sym-
bols to the Gaussian potential.

M/m = 13 M/m = 14

2H1L -0.001(1) -0.0057(6)

3H1L -0.088(1) -0.135(1)

4H1L -0.340(1) -0.454(1)

TABLE I: Binding energies for the 3H1L and 4H1L system at
mass ratios near threshold for the 2H1L system. Energies are
given in terms of E0 for the Poschl-Teller potential.

are shown in Figure 1 for these specific two-body in-
teractions. All energies are plotted in units of E0 ≡

!2/(2µr2eff ), where reff is the effective range of the in-
teraction. For these two-body interactions the regimes
where E ! 0 are shown, nevertheless they would collapse
to large negative energies and zero radius as the two-
body effective range is reduced. The few-particle system
will collapse at this point independent of whether the
particles are confined in a trap or not.
For these interactions we find that the four heavy one

light system collapses at a much smaller mass ratio than
the three heavy one light which, in turn, collapses be-
fore the two heavy one light. The additional attraction
obtained from the light particle orbiting multiple heavy
fermions is sufficient to bind them quite deeply. The in-
crease in binding with mass ratio is very rapid for the
3H1L and particularly for the 4H1L system. For these
simple interactions, the binding of the 3H1L and 4H1L
clusters are very large at the mass ratio where the 2H1L
system is near threshold. Results for the Poschl-Teller
potential are given in Table I.
It could be possible that adding additional fermions

would bind the system at even smaller mass ratios. To
test this assertion we have performed calculations of
the 9H1L and 10H1L systems using the same Quantum
Monte Carlo techniques. These particle numbers are sug-

Non-Universal Behavior N-heavy 1-light at Unitarity

Mass Ratio

Energy

open: gaussian, closed: cosh, ... + 3 body forces,...
heavier systems (eg. 5H1L) less bound



Future Possibilities

‘Exotic’ Superfluid States
Mixed (or other) Dimensions
Static Response & Finite Systems
Dynamic (RF) Response
Multiple Species
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